ZETA FUNCTION IDENTITIES OVER THE NON-POWERS

DICK BOLAND

ABSTRACT. Transforming the summation terms of the zeta function by the geometric series identity into terms over the non-power integers yields interesting identities for the zeta function. This paper is currently missing lots of bits to be restored eventually - a work in progress

1. Introduction

Every integer > 1 is either a perfect power or it isn't. Let \mathbb{V} be the non-powers [1] and \mathbb{W} be the powers [2]. Obviously, $1 \cup \mathbb{V} \cup \mathbb{W} = \mathbb{Z}^+$ and $\mathbb{V} \cap \mathbb{W} = \emptyset$.

The prime factorization of any given non-power, $v = p_1^{j_1} \cdot p_2^{j_2} \cdots p_r^{j_r}$, is by definition, such that $\gcd(j_1, j_2, \dots, j_r) = 1$. For any given v, the numbers, $v^s \forall s > 1$ (integer s), define a unique subset of unique elements of \mathbb{W} .

To see this is so, take any power, w, and note it has only one possible non-power, v, as its base. Taking any v and raising it to each integer power, s > 1, yields a subset of \mathbb{W} corresponding to all powers with non-power base v, which are obviously unique from each other and from all other remaining elements of \mathbb{W} . Thus, over \mathbb{V} , over all s > 1, all elements of \mathbb{W} are accounted for completely and uniquely.

The prime factorization of a power is then: $w = v^s = (p_1^{j_1} \cdot p_2^{j_2} \cdots p_r^{j_r})^s$ where s > 1, because $\gcd(j_1, \ldots, j_r) = 1$ is still required to ensure the base, v, always belongs to \mathbb{V} . Each unique element of \mathbb{W} is then in one to one correspondence with the unique pairs (v, s).

These transform lemmas follow:

Lemma 1.

$$\sum_{\mathbb{W}} \sum_{s=2}^{\infty} f(v^s) = \sum_{\mathbb{W}} f(w)$$

Lemma 2.

$$\sum_{\mathbb{V}} \sum_{s=1}^{\infty} f(v^s) = \sum_{k=2}^{\infty} f(k) = \sum_{\mathbb{V}} f(v) + \sum_{\mathbb{W}} f(w)$$

2. The zeta function by the non-powers

Lemma(1) leads to, and proves, the equivalency:

Theorem 1.

(2.1)
$$\zeta(z) = 1 + \sum_{V} \frac{1}{v^z - 1}$$

Date: February 5, 2007.

2000 Mathematics Subject Classification. 11M26, 30B40.

Key words and phrases. Number Theory, Harmonic Analysis, Riemann Hypothesis, Zeta Function, Perfect Powers, Geometric Series, Telescoping Sum.

Proof. To derive the equivalence, use Lemma(1) and the geometric series identity $\sum_{s=1}^{\infty} \frac{1}{x^s} = \frac{1}{x-1}$, to split it and fiddle with it thusly:

(2.2)
$$\zeta(z) = \sum_{k=1}^{\infty} \frac{1}{k^z} = 1 + \sum_{\mathbb{V}} \frac{1}{v^z} + \sum_{\mathbb{W}} \frac{1}{w^z}$$
$$\zeta(z) = 1 + \sum_{\mathbb{V}} \frac{1}{v^z} + \sum_{\mathbb{V}} \sum_{s=2}^{\infty} \frac{1}{v^{sz}}$$
$$\zeta(z) = 1 + \sum_{\mathbb{V}} \sum_{s=1}^{\infty} \frac{1}{v^{sz}}$$
$$\zeta(z) = 1 + \sum_{\mathbb{V}} \frac{1}{v^z - 1}$$

Or, use Lemma (2) to do it in 2 steps:

(2.3)
$$\zeta(z) = \sum_{k=1}^{\infty} \frac{1}{k^z} = 1 + \sum_{\mathbb{V}} \sum_{s=1}^{\infty} \frac{1}{v^{sz}}$$
$$\zeta(z) = 1 + \sum_{\mathbb{V}} \frac{1}{v^z - 1}$$

Consider the infinite set of summation terms on each side of:

$$\sum_{k=1}^{\infty} \frac{1}{k^z} = 1 + \sum_{\mathbb{V}} \frac{1}{v^z - 1}$$

Being equivalent, each side has the same radius of convergence and, when convergent, the same functional value for any given z. Although only formally equivalent for $z \leq 1$, it does seem it can be evaluated at z=1 where the equivalence when divergent can be demonstrated directly. Substitute Goldbach's well-known result, $\sum_{\mathbb{W}} \frac{1}{w-1} = 1$ [per Euler [3]], into Eq.(2.1) with z=1 to express:

(2.4)
$$\zeta(1) = \sum_{k=1}^{\infty} \frac{1}{k} = \sum_{\mathbb{W}} \frac{1}{w-1} + \sum_{\mathbb{V}} \frac{1}{v-1}$$

where each side then matches term by term infinitely.

3. Requirements of the zeta by non-powers equivalence

Eq.(2.1) can be rewritten

(3.1)
$$\zeta(z) = 1 + \sum_{\mathbf{w}} \frac{1}{2(v^{z/2} - 1)} - \sum_{\mathbf{w}} \frac{1}{2(v^{z/2} + 1)}$$

And Eq.(2.1) is an identity for the zeta function itself, thus

(3.2)
$$\zeta(z) = 1 + \frac{\zeta(z/2) - 1}{2} - \sum_{\mathbf{v}} \frac{1}{2(v^{z/2} + 1)}$$

so that,

(3.3)
$$\sum_{v} \frac{1}{v^{z/2} + 1} = 1 + \zeta(z/2) - 2\zeta(z)$$

Theorem 2. Where it converges

(3.4)
$$\sum_{\mathbb{V}} \frac{v^z + 2}{v^{2z}(v^z + 1)} = \sum_{\mathbb{W}} \frac{w^z - 2}{w^{2z}}$$

Proof. Convert the zetas on the rhs of of Eq.(??) to their standard sum form and solve

$$\sum_{\mathbb{V}} \frac{1}{v^z + 1} = \sum_{k=2}^{\infty} \frac{1}{k^z} (1 - \frac{2}{k^z})$$

$$\sum_{\mathbb{V}} \frac{1}{v^z + 1} = \sum_{\mathbb{V}} \frac{1}{v^z} (1 - \frac{2}{v^z}) + \sum_{\mathbb{W}} \frac{1}{w^z} (1 - \frac{2}{w^z})$$

$$\sum_{\mathbb{V}} \frac{v^z + 2}{v^{2z} (v^z + 1)} = \sum_{\mathbb{W}} \frac{w^z - 2}{w^{2z}}$$

4. A TELESCOPING ZETA-FUNCTION SUM

Obviously, the splitting performed to get Eq.(3.1) could continue indefinitely.

$$\begin{split} \zeta(z) &= 1 + \sum_{\mathbb{V}} \frac{1}{4(v^{z/4} - 1)} - \sum_{\mathbb{V}} \frac{1}{4(v^{z/4} + 1)} - \sum_{\mathbb{V}} \frac{1}{2(v^{z/2} + 1)} \\ \zeta(z) &= 1 + \sum_{\mathbb{V}} \frac{1}{8(v^{z/8} - 1)} - \sum_{\mathbb{V}} \frac{1}{8(v^{z/8} + 1)} - \sum_{\mathbb{V}} \frac{1}{4(v^{z/4} + 1)} - \sum_{\mathbb{V}} \frac{1}{2(v^{z/2} + 1)} \\ &\vdots \end{split}$$

Transforming in the other direction leads to a generalization which bears further on the argument of Conjecture(??) and may be a good starting point from which to seek an alternate demonstration of a proof.

Theorem 3. For any complex z and integers $\{a, b \mid a \leq b\}$, the following identity holds:

(4.1)
$$2^{a}\zeta(2^{a-1}z) - 2^{b+1}\zeta(2^{b}z) = \sum_{j=a}^{b} 2^{j} \left(\sum_{\mathbb{V}} \frac{1}{v^{2^{j-1}z} + 1} - 1\right)$$

Proof. Begin with multiple occurrences of identities from Eq. (??) as follows:

$$\vdots$$

$$\zeta(z/8) - 2\zeta(z/4) = -1 + \sum_{\mathbb{V}} \frac{1}{v^{z/8} + 1}$$

$$\zeta(z/4) - 2\zeta(z/2) = -1 + \sum_{\mathbb{V}} \frac{1}{v^{z/4} + 1}$$

$$\zeta(z/2) - 2\zeta(z) = -1 + \sum_{\mathbb{V}} \frac{1}{v^{z/2} + 1}$$

$$\zeta(z) - 2\zeta(2z) = -1 + \sum_{\mathbb{V}} \frac{1}{v^z + 1}$$

$$\zeta(2z) - 2\zeta(4z) = -1 + \sum_{\mathbb{V}} \frac{1}{v^{2z} + 1}$$

$$\vdots$$

and let the middle line correspond to j=0 and multiply each equality by 2^{j}

When summed over j from a to b, the lhs telescopes to yield Eq.(4.1), completing the proof.

References

- N.J.A. Sloane, Not a Perfect Power, Sequence A007916, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/A007916
- N.J.A. Sloane, Perfect Powers, Sequence A001597, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/A001597
- [3] Several Remarks on Infinite Series, Commentarii Academiae Scientarum Petropolitanae 9 (1737), 1744, p. 160-188. Comment # 72 from Enestroemiani's Index. Translated from Latin by Peligrí Viader and Lluís Bibiloni and Pelegrí Viader Jr., via The Euler Project.
- [4] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, 2nd Ed., Addison-Wesley (1994), 59-60,66

- [5] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, 2nd Ed., Addison-Wesley (1994), 206
- [6] J. Havil, Gamma, Exploring Euler's Constant, Princeton University Press (2003), 195
- [7] J. Havil, Gamma, Exploring Euler's Constant, Princeton University Press (2003), 210
- [8] D. Boland, The Number Theoretic Nature of the Multiplicity of $\sum_{k=2}^{\infty} \sum_{s=2}^{\infty} k^{-s} = 1$, Apartment of Mathematics, Imathination.org, (2006), http://www.imathination.org/multiplicity.html

E-mail address: abstract@imathination.org