
ZETA FUNCTION IDENTITIES OVER THE NON-POWERS

DICK BOLAND

Abstract. Transforming the summation terms of the zeta function by the

geometric series identity into terms over the non-power integers yields inter-

esting identities for the zeta function. This paper is currently missing lots of
bits to be restored eventually - a work in progress

1. Introduction

Every integer > 1 is either a perfect power or it isn’t. Let V be the non-powers
[1] and W be the powers [2]. Obviously, 1 ∪ V ∪ W = Z+ and V ∩ W = ∅.

The prime factorization of any given non-power, v = pj1
1 · pj2

2 · · · pjr
r , is by def-

inition, such that gcd(j1, j2, . . . , jr) = 1. For any given v , the numbers, vs∀s > 1
(integer s), define a unique subset of unique elements of W.

To see this is so, take any power, w , and note it has only one possible non-power,
v , as its base. Taking any v and raising it to each integer power, s > 1, yields a
subset of W corresponding to all powers with non-power base v , which are obviously
unique from each other and from all other remaining elements of W. Thus, over V,
over all s > 1, all elements of W are accounted for completely and uniquely.

The prime factorization of a power is then: w = vs = (pj1
1 · pj2

2 · · · pjr
r )s where

s > 1, because gcd(j1, . . . , jr) = 1 is still required to ensure the base, v , always
belongs to V. Each unique element of W is then in one to one correspondence with
the unique pairs (v , s).

These transform lemmas follow:

Lemma 1. ∑
V

∞∑
s=2

f (vs) =
∑
W

f (w)

Lemma 2. ∑
V

∞∑
s=1

f (vs) =
∞∑

k=2

f (k) =
∑

V
f (v) +

∑
W

f (w)

2. The zeta function by the non-powers

Lemma(1) leads to, and proves, the equivalency:

Theorem 1.

(2.1) ζ(z) = 1 +
∑

V

1
vz − 1
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Proof. To derive the equivalence, use Lemma(1) and the geometric series identity∑∞
s=1

1
xs = 1

x−1 , to split it and fiddle with it thusly:

(2.2) ζ(z) =
∞∑

k=1

1
kz

= 1 +
∑

V

1
vz

+
∑
W

1
wz

ζ(z) = 1 +
∑

V

1
vz

+
∑

V

∞∑
s=2

1
vsz

ζ(z) = 1 +
∑

V

∞∑
s=1

1
vsz

ζ(z) = 1 +
∑

V

1
vz − 1

Or, use Lemma (2) to do it in 2 steps:

(2.3) ζ(z) =
∞∑

k=1

1
kz

= 1 +
∑

V

∞∑
s=1

1
vsz

ζ(z) = 1 +
∑

V

1
vz − 1

�

Consider the infinite set of summation terms on each side of:
∞∑

k=1

1
kz

= 1 +
∑

V

1
vz − 1

Being equivalent, each side has the same radius of convergence and, when conver-
gent, the same functional value for any given z. Although only formally equivalent
for z ≤ 1, it does seem it can be evaluated at z = 1 where the equivalence when
divergent can be demonstrated directly. Substitute Goldbach’s well-known result,∑

W
1

w−1 = 1 [per Euler [3]], into Eq.(2.1) with z = 1 to express:

(2.4) ζ(1) =
∞∑

k=1

1
k

=
∑
W

1
w − 1

+
∑

V

1
v − 1

where each side then matches term by term infinitely.

3. Requirements of the zeta by non-powers equivalence

Eq.(2.1) can be rewritten

(3.1) ζ(z) = 1 +
∑

V

1
2(vz/2 − 1)

−
∑

V

1
2(vz/2 + 1)

And Eq.(2.1) is an identity for the zeta function itself, thus

(3.2) ζ(z) = 1 +
ζ(z/2) − 1

2
−

∑
V

1
2(vz/2 + 1)
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so that,

(3.3)
∑

V

1
vz/2 + 1

= 1 + ζ(z/2) − 2ζ(z)

Theorem 2. Where it converges

(3.4)
∑

V

vz + 2
v2z(vz + 1)

=
∑
W

wz − 2
w2z

Proof. Convert the zetas on the rhs of of Eq.(??) to their standard sum form and
solve ∑

V

1
vz + 1

=
∞∑

k=2

1
kz

(1 − 2
kz

)

∑
V

1
vz + 1

=
∑

V

1
vz

(1 − 2
vz

) +
∑
W

1
wz

(1 − 2
wz

)

∑
V

vz + 2
v2z(vz + 1)

=
∑
W

wz − 2
w2z

�

4. A telescoping zeta-function sum

Obviously, the splitting performed to get Eq.(3.1) could continue indefinitely.

ζ(z) = 1 +
∑

V

1
4(vz/4 − 1)

−
∑

V

1
4(vz/4 + 1)

−
∑

V

1
2(vz/2 + 1)

ζ(z) = 1 +
∑

V

1
8(vz/8 − 1)

−
∑

V

1
8(vz/8 + 1)

−
∑

V

1
4(vz/4 + 1)

−
∑

V

1
2(vz/2 + 1)

...

Transforming in the other direction leads to a generalization which bears further
on the argument of Conjecture(??) and may be a good starting point from which
to seek an alternate demonstration of a proof.

Theorem 3. For any complex z and integers {a, b | a ≤ b}, the following identity
holds:

(4.1) 2aζ(2a−1z) − 2b+1ζ(2bz) =
b∑

j=a

2j(
∑

V

1
v2j−1z + 1

− 1)
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Proof. Begin with multiple occurrences of identities from Eq.(??) as follows:

...

ζ(z/8) − 2ζ(z/4) = −1+
∑

V

1
vz/8 + 1

ζ(z/4) − 2ζ(z/2) = −1+
∑

V

1
vz/4 + 1

ζ(z/2) − 2ζ(z) = −1+
∑

V

1
vz/2 + 1

ζ(z) − 2ζ(2z) = −1+
∑

V

1
vz + 1

ζ(2z) − 2ζ(4z) = −1+
∑

V

1
v2z + 1

...

and let the middle line correspond to j = 0 and multiply each equality by 2j

... j = a

ζ(z/8)/4 − ζ(z/4)/2 = −1/4+
∑

V

1
4(vz/8 + 1)

j = −2

ζ(z/4)/2 − ζ(z/2) = −1/2+
∑

V

1
2(vz/4 + 1)

j = −1

ζ(z/2) − 2ζ(z) = −1+
∑

V

1
vz/2 + 1

j = 0

2ζ(z) − 4ζ(2z) = −2+
∑

V

2
vz + 1

j = 1

4ζ(2z) − 8ζ(4z) = −4+
∑

V

4
v2z + 1

j = 2

... j = b

When summed over j from a to b, the lhs telescopes to yield Eq.(4.1), completing
the proof. �
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